平面鑲嵌圖形有多少種
平面鑲嵌圖形有多少種
用同一圖形有三種,只有正三角形、正方形和正六邊形可鑲嵌平面,用其它正多邊形不能鑲嵌平面。 用若干類全等形無(wú)間隙且不重疊地覆蓋平面的一部分,叫做這幾類圖形能鑲嵌、覆蓋、鋪砌平面。
鑲嵌的一個(gè)關(guān)鍵點(diǎn)是在每個(gè)公共頂點(diǎn)處,各角的和是360度.最簡(jiǎn)單的鑲嵌是只用一類全等形鑲嵌平面。
什么是平面鑲嵌
平面鑲嵌是指用形狀、大小完全相同的一種或幾種平面圖形進(jìn)行拼接,彼此之間不留空隙、不重疊地鋪成一片,平面鑲嵌又稱為\”平面密鋪\”、“平面圖形的鑲嵌”。平面鑲嵌的一個(gè)關(guān)鍵點(diǎn)是在每個(gè)公共頂點(diǎn)處各角的和是360度。
最簡(jiǎn)單的鑲嵌是只用一類全等形鑲嵌平面。
平面鑲嵌的條件是不重疊、無(wú)縫隙。
什么叫平面鑲嵌
平面鑲嵌 1、用形狀、大小完全相同的一種或幾種平面圖形進(jìn)行拼接,彼此之間不留空隙、不重疊地鋪成一片,這就是平面圖形的密鋪,又稱做平面圖形的鑲嵌。2、用相同的正多邊形鋪地板.對(duì)于給定的某種正多邊形,它能否拼成一個(gè)平面圖形,而不留一點(diǎn)空隙?顯然問(wèn)題的關(guān)鍵在于分析能用于完整鋪平地面的正多邊形的內(nèi)角特點(diǎn).當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起恰好組成一個(gè)周角360°時(shí),就鋪成一個(gè)平面圖形.事實(shí)上,正n邊形的每一個(gè)內(nèi)角為(n-2)180,要求k個(gè)正n邊形各有一個(gè)內(nèi)角拼于一點(diǎn),恰好覆蓋地面,這樣360°=k(n-2)180/n,而k是正整數(shù),所以n只可能為3,4,6.因此,用相同的正多邊形地板磚鋪地面,只有正三角形,正四邊形,正六邊形的地磚可以用.我們知道,任意四邊形的內(nèi)角和都等于360°.所以用一批形狀大小完全相同但不規(guī)則的四邊形瓷磚也可以鋪成無(wú)空隙的地板.用任意相同的三角形可以鋪滿地面嗎?請(qǐng)同學(xué)們拼拼看.3、用兩種或兩種以上的正多邊形拼地板我們已知知道.有些相同的正多邊形能夠鋪滿地面,而有些則不行.實(shí)際上我們還看到有不少用兩種以上邊長(zhǎng)相等的正多邊形組合成的平面圖案.如教材上所列的幾種情況.為什么這些正多邊形組合能夠密鋪地面?這個(gè)問(wèn)題實(shí)質(zhì)上是相關(guān)正多邊形“交接處各角之和能否拼成周角”的問(wèn)題. 我們知道全等的任意三角形、四邊形都可以進(jìn)行平面鑲嵌(如圖1、2)。
而大于等于五邊的只有特殊多邊形才能平面鑲嵌。
凸多邊形能進(jìn)行平面鑲嵌的邊數(shù)都少于7邊。多少年來(lái),尋找特殊的五邊形進(jìn)行平面鑲嵌就成了許多數(shù)學(xué)家的夢(mèng)想。 讓幾個(gè)角相加等于360°。說(shuō)起倒輕松,還是讓我們回來(lái)看看為什么全等的任意三角形、四邊形都可以進(jìn)行平面鑲嵌吧。
圖1是由全等的任意三角形組成的平面鑲嵌,仔細(xì)觀察我們發(fā)現(xiàn),這個(gè)圖形是由三角形1、2組成的平行四邊形進(jìn)行平移得到的。我們把它叫做特征多邊形。圖2是全等的任意四邊形的平面鑲嵌的特征多邊形。
研究發(fā)現(xiàn),這些特征多邊形的對(duì)應(yīng)邊是平行的。換句話說(shuō)就是:如果我們能把特征多邊形進(jìn)行適當(dāng)?shù)娜确指罹湍艿玫娇梢赃M(jìn)百科行平面鑲嵌的多邊形。 如圖3,正六邊形是一個(gè)可以進(jìn)行平面鑲嵌特征多邊形把它如圖三等分,就可以得到可以進(jìn)行平面鑲嵌的五邊形。
如圖4,是一個(gè)可以進(jìn)行平面鑲嵌特征多邊形把它如圖四等分就可以得到可以進(jìn)行平面鑲嵌的五邊形。這是圣地亞哥的婦女瑪喬里?賴斯1977年找到的。 如果允許有一組對(duì)邊平行可以進(jìn)行平面鑲嵌的圖形就太多了木工師傅就是把這種木料一塊一塊拼成大木板的。
平面鑲嵌的概念
用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,彼此間既不留空隙,又不重疊地鋪成一片,叫做平面圖形的鑲嵌。正三角形,正方形,正六邊形都能單獨(dú)完成平面鑲嵌,有時(shí)兩種正多邊形也能進(jìn)行平面鑲嵌。